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Linear Gravitational Waves and Electrodynamic
Formalism in Cosmology

Roman Tomaschitz!
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The propagation of linear gravitational waves is studied in open and multiply
connected Robertson-Walker cosmologies. In order for the group velocity of the
gravitational wave packets to coincide with the speed of light, the linear wave
equation must be conformally coupled. This opens the possibility of using the
electromagnetic formalism. The gravitational analogue to the electromagnetic
field tensor is introduced, and a tensorial counterpart to Maxwell’s equations
on the spacelike 3-slices is derived. The energy-momentum tensor for linear
gravitational waves is constructed without averaging procedures, a strictly positive
energy density is obtained, and it is shown that the overall energy of a gravitational
pulse scales with the inverse of the expansion factor.

1. INTRODUCTION

The high degree of symmetry of the Robertson—Walker (RW) line ele-
ment offers an approach to linear gravitational waves in close analogy to
electrodynamics, a tensorial version of Maxwell’s theory. The very great
advantage of this cosmological background geometry is that a positive energy
density can be derived for gravitational puises without using the averaging
procedures necessary in the standard theory of linearized gravitational waves.

The starting point of the standard theory is the linearization of the Ricci
tensor. In the linear wave equation derived in this way one usually drops
some curvature terms on the grounds of smallness considerations, on which
I will not expand here. So the linear equations discussed in the literature
differ somewhat, depending on the terms actually dropped (Isaacson , 1968;
Misner et al., 1973; Landau and Lifshitz, 1962). At any rate, they are, as
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linear equations, inconsistent either with the gauge conditions imposed or
with the requirement that the wave packets move with the speed of light. In
passing, we will demonstrate this very explicitly in RW cosmologies. The
usual argument, that these inconsistencies are of higher order in certain
heuristically defined expansion parameters, does not change anything, and
they become a real obstacle if one studies gravitational waves in multiply
connected RW cosmologies with noncommutative covering groups, as we
will do here.

In this paper we choose a very different approach in the context of RW
background geometries. We derive a linear wave equation which is (1) invari-
ant with respect to infinitesimal coordinate transformations in the Minkow-
skian limit (i.e., when spatial curvature and expansion rate approach zero),
(2) consistent with the gauge conditions (Lorentz condition, trace condition,
and requirement that time—time and space—time components of the wave
field are zero), and which is designed in such a way that (3) group and phase
velocities are identical with the speed of light. This wave equation turns out
to be conformally coupled. It can be derived from the Lagrangian L; =
—%GWVG"“", with G,,, = B,,,, — B,,.,. Geodesic motion in a linear gravita-
tional wave B, is then defined with respect to the metric gk) + B,,.

From the structure of L it is not surprising that we can formulate the
theory as a tensorial analogue to electrodynamics. In particular the energy
density can be defined as p = 4(E? + B?), with E* := E;EY and B? := B;BY,
where E;; and B;; are symmetric tensors on the 3-space of the RW geometry.
We thus arrive at a well-defined positive energy density and a conservation
law a*(t)p = const, with a(t) the expansion factor in the background
metric ghy'.

This paper is organized as follows. In Section 2 we derive a certain
class of linear tensorial wave equations, discuss Lagrangians for them, show
their compatibility with the gauge conditions usually imposed on gravitational
waves, and point out their relation to the linearized Ricci tensor. In Section
3 we discuss the definition of the energy-momentum tensor, the positivity
and conservation of energy, as well as the speed of wave propagation, and
select on the basis of these criteria the wave equation suitable to describe
freely propagating linear gravitational pulses in the RW geometry.

In Section 4 we discuss the time evolution of wave fields and the spectral
theory of the wave equation in simply connected, open RW cosmologies with
negatively curved spacelike slices. We also consider in this context the spin of
wave fields and the composition of wave packets from the spectral elementary
waves. In Section 5 we discuss wave propagation in RW cosmologies with
multiply connected spacelike slices. We introduce automorphic tensor fields
and sketch the orthogonality and completeness relations for the spectral
elementary waves. In Section 6 we finally derive the tensorial analogue of
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Maxwell’s equations, at first manifestly covariantly, and then in terms of 3-
tensors on the spacelike slices. In the Appendix we list some explicit formulas
for the curvature tensor and covariant derivatives in RW geometries.

2. LAGRANGIANS FOR LINEAR GRAVITATIONAL WAVES

In Minkowski space the most general Lorentz invariant Lagrangian that
leads to a linear wave equation for a symmetric tensor field B, is

L= '—'%{KIBMV,KBFW;K + KZBva;KBuK;v + K3BKV;KB)\";)\ + K4B::',VB)){’V

+ ksBL, BN\ + myB,,B* + mooBEB)} (2.1)

Itis second order in the B,,, and contains no higher than first-order derivatives.
We obtain the wave equation

(8L, oL
aBw.,|  aB*
My

= KlBuv;)\;)\ + %KZ(B[LK;V;K + BvK;p,;K) + %KZ(BKP.;K;V + BKV;K;p,)

0

+ K4B§;'ng;w + _;'KS(Bz;p;v + BKR;)\;Kg,w) - mOBpm - mOOBﬁgu.v (22)

We wrote (2.1) and (2.2) in terms of covariant derivatives, and did not
interchange derivatives. So these equations hold true in an arbitrary curved
space. L is then the most general covariant Lagrangian which does not contain
curvature terms (i.e., the Riemann curvature tensor and its contractions).

In Minkowski space, g,, = diag(—1,1,1,1), we require that the wave
equation (2.2) is invariant with respect to gauge transformations B,,, — B,,
+ €., + &, with an arbitrary vector field §,. In order that B, := §,, +
£,,. is a solution of (2.2) we must have k; + k3 = —2k;, Ks = 2K, Kg =
~Kj, and my = my = 0. We assume these relations also in a curved space;
cf. Remark 1 below. Clearly, k; # 0, and we may choose, without loss of
generality, k;, = 1. The wave equation (2.2) can now be written as

Bp.v;)\;)\ - (BK;A.K;v + BKV;K;}L) + BKK;p.;v + K2BK)\RKp.v)\
+ k(R B, + R\BY,) =0 (2.3)
We interchanged here covariant derivatives,

Buw® + By = By + Baty + 2B R, + R BY, + RyB,
(2.4)
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[with sign conventions for the Riemann and Ricci tensors as in Misner et
al. (1973) and Landau and Lifshitz (1962)], and used the contraction of
equation (2.2),

BP'P‘;)\")‘ = BF)\;P-;)\ (2.5)

Remarks. 1. In a curved space, B, := §,.., + §,,, is no longer a solution
of the wave equation (2.3). This gauge invariance is only recovered in the
limit of vanishing curvature; in a RW cosmology this is the case in the limit
of slow expansion, d¢/a ~ 0, dfa =~ 0, and large spatial curvature radius a(T)R;
cf. the Appendix.

2. For k, = —2, the left side of equation (2.3) is —2R:i‘:,, where Rli',‘, is
the linearized Ricci tensor with the RW metric as background and B,,, as the
linearized fluctuation. We will later see that only the value k, = —1 corres-
ponds to conformal coupling and a wave propagation at the speed of light.

Let us next consider the Lagrangian
Lg:= —+G,,,G* — 3aR,,B**B} — 18R, o, B*"B* (2.6)
with
G = By = Bayw 2.7

This tensor, which is the key to the electrodynamic formalism, was introduced
in Fierz (1939). L is evidently not of the form (2.1), because it contains
curvature terms. We have then as Lagrange equations

0o (3L , B
3B*,) ~ 8B™

= Buv;)\;)\ - _;'(B)\p,;v;)\ + B)\v;u;)\) - %a(Rp.AB)\v + Rv)\B)\p.) - BBK)‘R}LK)\V
(2.8)
Using equation (2.4), we obtain
Buv;h;)\ - (1 + B)BK)\RK}LV)\ - %(1 + a)(Rp.)\B)‘v + Rv)\B)\p.)
- %(BK’L;K;II + BKII;K',p,) =0
2.9

and with (2.7) we may write this as
Gop? — 3Gy — 2a(RpB*, + R,\B,) — BRywsB® = 0 (2.10)
Gyo'? = R B, — Ry\B", + By, — B*, 2.1D)

Equations (2.1)—(2.11) were formulated in an arbitrary Riemannian
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space. From now on we assume a RW geometry, with a curvature tensor as
defined in the Appendix.

We search for solutions of equation (2.9) which satisfy the trace and
transversality conditions

x = () (2.12)
B, = 2.13)

In order that these conditions are consistent with the wave equation (2.9),
we must require a = 3, which follows immediately by contracting equation
(2.9). Moreover, we see that the wave equations (2.3) and (2.9) are identical
if we put

a = f, K, = —~(1+a) (2.14)

and impose the subsidiary conditions (2.12) and (2.13). From now on we
assume the identification (2.14).

In a general Riemannian space the subsidiary conditions (2.12) and
(2.13) are not consistent with the wave equations (2.3) or (2.9), but in a RW
geometry they are. Moreover, we can impose on the solutions of equation
(2.9), in addition to (2.12) and (2.13),

By,=0 (2.15)

no

To see that equations (2.9), (2.12), (2.13), and (2.15) are mutually consistent,
one may use the explicit formulas for the curvature tensor in the Appendix,
and the v — p contraction of the identity

B @ = By 2By R + 2Bpo R\ + By R,

pria’ sp

+ B (R, — R0 + Bo(R, ., — R (2.16)

AT

which holds true, by the way, in every Riemannian space. To obtain equation
(2.16), one uses the commutation rules for covariant derivatives and the
contracted Bianchi identity.

The Lagrangians (2.1) and (2.6) lead to identical wave equations under
the indicated conditions. However, it turns out that L in (2.6) is the appro-
priate choice for the construction of the energy-momentum tensor.

3. ENERGY OF LINEAR GRAVITATIONAL WAVES

Throughout this section we assume a RW geometry as defined in the
Appendix. In this context we define energy for wave packets satisfying the
wave equation (2.9) and the subsidiary conditions (2.12), (2.13), and (2.15).
In contrast to less symmetric space-time geometries, one need not resort to
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averaging procedures (e.g., Misner et al., 1973) to define energy. Rather, we
will proceed in quite a similar way as in electromagnetic theory.
Using standard Lagrange formalism, we start with the tensor

A SLg

o = —

. aBaB;u

with Lg as in (2.6) [B = a; cf. (2.14)].
To symmetrize T,w, we add a divergence

Thy = (G*™®, By = Gopu B P + LGP, PB,, + G%,*B,,) (3.2)

BaB;v + gp.vLG = _GmBuBuB;v + gp.vLG (31)

[The tensor G, B, is symmetric, which follows from the wave equation
(2.10) and the subsidiary conditions.] Under these conditions we have

Tiw;“' = Bo‘”’;BBo‘)\R)\,,B‘L (33)

We define the energy-momentum tensor for solutions of the wave equa-
tion (2.9) which satisfy the three subsidiary conditions as

T, = Tuv + T = GopuG*®, + %(GPBM;BBPV + GPBV;BBPH)
- guv(TlmexBGKaB + ‘zl'achBucBap + %aRxaB)\BK)\BaB)
3.4

By means of the field equations (2.10), the subsidiary conditions, and the
explicit formulas for the curvature tensor in the Appendix, we may write
(3.4) as

T, =TG + TE, 3.5)

Tgv = quGqu - %g;wGKuBGKaB (36)
-3 1d 1 4°

T := 3¢ 20‘(Rz ; 2a +3 2 ;)BabBab (3.7

-3 1 d 1 a
TB = a(Rz ) + = cz a +3 ?;)(BmlBln - %gmnBabBab) (38)

T8 :=0 (3.9

The divergence T,,,* is straightforward to calculate. It is convenient to replace
G,p,PBP, by G, PBP, and to eliminate G,p,*® by means of the field equations
(2.10) before differentiating equation (3.4). Note in particular that

Gy =0 (3.10)

GGk, GoPr =0 3.11

2 appiy
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because of the subsidiary conditions and the special structure of the curvature
tensor in a RW geometry. We finally obtain, using the contracted Bianchi
identity, R“’aypm‘ = RSp;'y - RS'y;p,

T," = —%a(R“B;,,BuPBBp + RKO‘B}\;,,BK"B“B) (3.12)
and thus
i1 lda 14 1dad
= —1lyB an62__+ ————— + - == .
Lo 245 mn [ a (Rza2 cta 2 az) ctdr a] (3.13)
T,.,#=0 (3.14)

If o = 0, or if the Riemann tensor is covariantly constant, R,g.s,, = 0, then
T, satisfies the differential conservation law T, = 0.

Remark. RW cosmologies that admit a ten-parameter group of continuous
symmetries (and in particular boosts that mix space and time) are characterized
by an expansion factor which satisfies

1d _1a? 1
a cta® @R
and, as a consequence,
da
dra

We refer in the following to such cosmologies as of de Sitter/Minkowski
type. Well-known examples are a(t) = sinh(cR™'t), R positive; a(t) =
cosh(c!RI~'7), R imaginary; a(t) = sin(cR™'1), R positive; a(t) = exp(AT),
R = o, A is a constant; a(t) = cR™ !, R positive (a flat 4-manifold); a(t)
= 1, R = %, A positive curvature radius means negatively curved spacelike
slices in our notation; cf. the Appendix. These geometries have a covariantly
constant curvature tensor. The only RW cosmologies with this property are
either maximally symmetric or static (¢ = 0); cf. (A.3).

The structure of TG, in (3.6) is reminiscent of electromagnetic theory.
We can introduce symmetric 3-tensors E,,,, H,, on the 3-space of the RW
geometry by defining

E.:= ¢ 'Guo (3.15)
H," := Iy~ '2€"G,,; (3.16)
and inversely,

Gnij = ¥ € H,t G.17
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Latin indices run from 1 to 3, Greek ones from 0 to 3. The metric g; on the
3-space is defined at the beginning of the Appendix; «y denotes its determinant,
and y'”e;; and y~"2e% are the totally alternating co- and contravariant Levi-
Civita tensors on the 3-space. It is understood that G,,,, defined in (2.7) is
composed of B,,,-fields which satisfy the subsidiary conditions (2.12), (2.13),
and (2.15). With E? := E;EY and H? := H;HY we may then write

TS = %62(E2 + H?) (3.18)
Tgn = %'(Ez + H2)gmn - HlnHlm - ElnElm (319)
T,(,i() = C'Yl/2€mij[jElk (320)

Clearly, T§, is positive definite, but the energy density Ty, of the wave field
is composed of T§, and T§, and T5, need not be positive for an arbitrary
expansion factor; cf. (3.7). However, if a = 0, which corresponds to a
conformally coupled wave equation (cf. Section 4), we have Tﬁv = (, and
thus a positive energy density Tyy = T.

Note that in the Lagrangian (2.6) the a term (o = B) explicitly reads

1a(R,,B*B}, + R,.p,B**B*") = *T%, (3.21)

pafv

with T8 as in (3.7). In the static case, a = 1, and with negative a this is
just a mass term, (mc/f)? := —3a/R2 In maximally symmetric background
geometries T§, is also a constant multiple of BUB"J'; cf. the Remark after
(3.14). For a = 1 the wave equation (2.9) with the subsidiary conditions
(2.12), (2.13), and (2.15) is equivalent to the linearized Einstein equations;
cf. Remark 2 after equation (2.5) and the identification (2.14). A positive o,
however, corresponds to an imaginary mass term (if @ = 0) and to superlumi-
nal velocities; see also the discussion after equation (4.25). This mass term
is very tiny, and may be dropped in the linear approximation (Isaacson, 1968;
Misner et al., 1973; Landau and Lifshitz, 1962). In RW cosmology this means
that we replace the linearized Einstein equations by the conformally coupled
wave equation (2.9) (¢ = B = 0). This linear wave equation ensures that
linear gravitational waves propagate exactly at the speed of light and admit
an energy-momentum tensor (3.18)—(3.20) in perfect analogy to vacuum
electrodynamics. In the next two sections we will discuss the explicit construc-
tion of linear gravitational pulses by means of this wave equation.

4. COMPOSITION OF LINEAR GRAVITATIONAL WAVES

In this section we sketch the spectral theory of the wave equation (2.9)
(a = B) in a RW background metric with negatively curved spacelike slices.
As in Section 3, we assume that the wave solutions of (2.9) satisfy the
subsidiary conditions (2.12), (2.13), and (2.15).
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To perform the time separation, we express the d’ Alembertian in (2.9)
in terms of covariant derivatives (||) on the 3-space; cf. (A.9). Taking into
account the subsidiary conditions and the explicit formulas for the curvature
tensor in the Appendix, we obtain from (2.9)

1 la
B, — =B + -8B
mnllk C2 mn,0,0 cz a mn,0

+&4 ;gﬁﬁ-)—ljﬂ+3)+——ﬂ—aﬂ—0(4b

The comma followed by a zero means ordinary differentiation with respect
to cosmic time 7. The space—time and time—time components of the wave
equation vanish identically.

With the separation ansatz B,,, =: (p('r)B,,,,, we obtain from (4.1)

azémnllk"k + %an =0 (42)

and

a c a? d
—Sgotol=msN-3-3)+5( +30) —=(1 — =
P00 2 Pp (p[ B -3 - 3x) e {1 +3a) p (1 a)] 0
4.3)

A\ is the separatlon constant. Note that the 3-space metric g; scales with a*(v),
so the Laplacian B,,,,* on the 3-space scales with a‘2(~r), cf. (A.11).

We define now A := ¢/R (with R > 0), A =: 3 + %, and ¢ =: a2
Instead of (4.3) we have then

a* (1 afl
¢+¢[2(s—3a%+—<4+3a)—;(§-a)]=0 (4.4)

If a = 0, B,,, conformally scales with the expansion factor, since we obtain
as solution of (4.4)

Y. = a'? exp[-»—zAs JT a~ (1) d’l’] 4.5)

for an arbitrary expansion factor a(7).
In the static case, a(t) = 1, we have as solution of (4.4)

. = exp[FiA/s® — 3a 7] (4.6)
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In the case of linear expansion, a(t) = AT, a drops out in equation (4.4),
and we obtain

'b"_’ — (AT)Iis-H/Z (47)

as a pair of fundamental solutions.

Let us now turn to equation (4.2), with A = 3 + s2. The subsidiary
conditions (2.12), (2.13), and (2.15) impose restrictions on the solutions,
namely

B=0 B,"=0 (4.8)
They are consistent with equation (4.2), because

n " 2 4
B,,,,,"k""" = B, "kIVc + Fa_z Bkk||m — o

[cf. (2.16) and the formulas for the curvature tensor in the Appendix].

In order to determine the spectral resolution of equation (4.2) under
conditions (4.8), we have to specify the spacelike slices. We assume that
they are a(t)-scaled copies of hyperbolic space H?, as defined at the beginning
of the Appendix. The tensorial hyperbolic Laplacian in (4.2) and the diver-
gence in (4.8) are explicitly evaluated in (A.11) and (A.12).

We start with the ansatz

B;(s) := B;(/R)~'~" (4.10)

B,.* 4.9)

where Bj; is a constant symmetric matrix. In order for l?,-j(s) to satisfy equations
(4.2) and (4.8), B; must be a linear combination of the two matrices

1 0 O 010
BV =10 -1 0}, B®»:=11 0 0 4.11)
0 0 O 000

We generate a complete set of eigenfunctions by applying symmetry
transformations of the 3-space metric g; [defined after (A.9)] to Bij(s). It is
convenient to use for the H> coordinates (x;, x;, £) complex notation (z :=
x; + ix,, ). We consider the Mobius transformation ag(z) := (z — !
in the complex plane (£ = & + i&) and lift it to H> (Beardon, 1983;
Abhlfors, 1981),

2

R
PV IEEY: =& (4.12)

This coordinate transformation leaves g;; invariant. If we apply it to B,»j(s),
we obtain

('Xgi (Z, t) e d

B;(t/lR)™'7" — Bulofl ol 75z, 1) =: B,j(z, L& s) 4.13)
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with the Poisson kernel P(z, t; £) := Rt/(1z — €12 + 12). The Jacobian [og]
of a(z, 1) explicitly reads

" - R
o4l = e =g+ 27

= £t ()PP =20, — £ — &) =2(x; — &)t
200, — ED(x, — &) g —EP (- 82 2x, — &)
—2(x, — &)t —2(x; — &t lz— &2 7
“4.14)

In the following we will often use matrix notation, e.g., E’(z, L& s =
[aé]’B[aé]P“""‘(z, 1; £). Because a(z, 1) is a symmetry transformation of the
metric, B(z, t; &, s) is a solution of equations (4.2) and (4.8).

We consider the vector space of all symmetric, complex, three-by-three
matrices with scalar product (A, B) := Tr(AB), and choose an orthonormal

basis as

1 i 0 (-1 i
Br==i -1 0} B=2|i 10

2\0 0 o0 2\o0 0 o0

{100 {001
BSt=—[0 1 0) B2=-[0 0 i (4.15)

2\0 0 0 2\1 i o

[0 0 1 00 0
B*=-10 0 —i|, B%=(0 00

2\1 -i o 00 1

In the following we denote these matrices by B¥; X ranges over (R, L, S, n
=1, ...,4). B® and B’ are linear combinations of B and B®.

Next we consider the Hilbert space of complex, symmetric (three-by-
three) matrix-valued functions on H>, with the scalar product

<A7 B)H3 = j 5 0—3 dVH3 (A(Z’ t)’ B(Z’ t))H3
H

(A(z, 1), B(z, ) := a*gigAu B, (4.16)

dVip := a®R% 3 dx, dx, dt is the volume element of the 3-space.
We define [cf. (4.13)]

Bz, 1; € 5) := [} BX[of)P~175(z, 1 §) 4.17)
with X e (R, L,S,,n=1,...,4),5 € R, § € C. This function system
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constitutes a complete orthogonal set. In fact, a series of matrix multiplica-
tions gives

(BXz, & 5), Bz, 6, &', Wi = P175(z, £ OPY¥'(z, 1; €)Y + O(1€ — £'1)
(4.18)

from which orthogonality follows [cf. equations (2.10) and (2.13) in Tomas-
chitz (1993)]. To prove completeness, we only note that the analogue to
equation (2.16) in Tomaschitz (1993) is

S Bz & OBYZ, 15 E 9
Xe®,L,Sy)
8udu R 2PV, 1 PV, 1 E) + O(lz — 2L + 1t — 1'])
(4.19)

The subspace generated by BX(z, t; &, 5), X = R, L, comprises a complete
set of solutions of (4.2) and (4.8). The B®! factorize,

BYz & 5) = bz, £; OBz, 1; OP 'z, 1 &) (4.20)

with b*(z, t; £) := Bal(z, 01, B¥ := (1//2)(1, i, 0), and BL := (1//2)(, 1,
0). If £ = oo, then [ag(z, H] is the identity matrix, and P = #/R.

Concerning the spin of wave fields, the discussion is quite analogous
to that for spin-one-half particles (Tomaschitz, 1994a), and we also sketch
that very briefly. We define three contravariant vector fields é,(9) = (—1, 0,
0)t, &,(r) = (0, —1, 0)'t, and é&;(r) = (0, O, — 1)t on the horospherical wave
fronts issuing at § = oo; they are Euclidean planes parallel to the plane at
infinity (t = 0) of H>. We write é; the subscript i labels the triad vector, the
superscript k its components. The spin operators 3, on these wavefronts read
(Corson, 1953)

S ik = 88,k + OkS, @21

The §,, are the three spin operators of the electromagnetic field,

0 1t 0
Slj = B L e w8 S “E(-1 00 4.22)
lR it 0 0 0

(The appearance of # is merely symbolic in this classical context.) We have
the usual commutator relations 3, 2 2 S = zﬁ(l/Ra)ﬁeukEk We define

A

the spin projections onto the mad vectors as 8() := §,&" and 2(1)
3l
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The b*(z, t; §) as defined after (4.20) represent two circularly polarized
states of the electromagnetic field, S(3)b® = #bR, S(3)b- = —#bt, and we
have now analogously

S()BR = 248k, 3(3)BL = —24BL (4.23)

Note that the S()BRL, i = 1, 2, are in the orthogonal complement (generated
by the B%) of the transverse subspace (generated by B®!). The expectation
value of 3(3), which gives the projection of the spin in (or opposite to) the
direction of propagation, is (Bjorken and Drell, 1964)

(B + BB, S(3)(aBf + B, o?1BFI12 — B2IBLI?
A B A
|aBF + BBLI2 o2 BRI + B21BL12

(4.24)

The scalar product is defined in (4.16), |BX12 := (BX, B¥),p.

Finally we define spin on an arbitrary horosphere P(z, t; £) = const.
The triad vectors on this horosphere have the components ef =
[ai(z, DI ”“’(ag(z, ) [cf. equatlon (4.2) in Tomaschitz (1994a)]. The horo-
spherical spin operators are Sw' = S laglnlogllagll, and 3, is as in (4.21)
with §,, replaced by S,,. The spin in the direction of ¢,, is defined as Z(m)
= ek, and (4.24) holds true with the obvious replacements.

Let us consider a plane wave propagating along the ¢ axis. With a(t) =
1 and - as in (4.6), we have

By = B,(t/R)~" exp i[~s log(t/R) ¥ A/s* — 3o 7] 4.25)

The phase velocity is obtained by equating the differential of the phase to
zero, lv| = a(MRr'ldildr! = c¢ls|~!(s* — 3a)"2. To obtain the group
velocity, we have to differentiate the phase with respect to s before calculating
the differential, lv, | = clsi(s®> — 3a)™"2. If we agree that gravitational
waves propagate with the speed of light, then a must vanish; cf. the end of
Section 3. The B field is then conformally coupled [cf. (4.5)] and the energy
density is strictly positive [cf. (3.18)]. The Lagrange function (2.6) reads

Lo = ~4GuG = 4(E? ~ 1) 26)

E? and H? as introduced in (3.18) scale with a~*(t) and so does the
energy density.

The general shape of a wave packet is obtained as a superposition of
the spectral elementary waves @ BX, with BX as in (4.17) and ¢- as in (4.5)
(¢~ = a'Mp.). We have

By = Re f dsdt Y (wee, + w0 )BYz 1, & sWE, 5, X) (4.27)
R3 ,

X=R,L



968 Tomaschitz

w. are arbitrary constants and w(s, & X) is a weight function that makes
B} square-integrable.

5. GRAVITATIONAL WAVES IN A MULTIPLY CONNECTED
RW COSMOLOGY

We outline the spectral resolution of the B field for the case that the
spacelike slices are multiply connected, open, hyperbolic manifolds [cf. the
review by Tomaschitz (1996)]. We assume that the covering group I' is of
Schottky or quasi-Fuchsian type. The spectral theory of equations (4.2) and
(4.8) is a straightforward extension of the spectral theory of the electromag-
netic field. The formalism and the notation used in this section are explained
in Tomaschitz (1993, 1994a).

We study automorphic tensor fields (Poincaré series) of the type

B} = Z:r (Y1 Bify(z, YL (5.1)

where By(z, f) is a symmetric tensor field in H>. In the following we use
matrix notation throughout. B'(z, #) denotes a tensor field on a hyperbolic
3-manifold (F, T). F is a fundamental polyhedron in H3, and BY satisfies
periodic boundary conditions on the polyhedral faces; we have B'(z, 1) =
(B’ 1B(B(z, H)[B'] in H*> for aliB € T.

We choose for B(z, 1) in (5.1) the BX(z, t; £, 5) defined in (4.17), and obtain

B(z, 1, &, 5)
= 3, (leitye OIY & ODE ety DY @ DIP 01tz 05 ©
ye
(5.2

which is a solution of equations (4.2) and (4.8), because both a; and the
elements of I" are symmetry transformations of the H> metric. With these
functions we can construct a complete set of eigenfunctions of (4.2) and (4.8)
on the 3-space (F, I).

By means of equations (3.6) and (3.7) of Tomaschitz (1993) and equation
(7.7) of Tomaschitz (1994a), we can write (5.2) as

BTz, 1 & )
= ZF (LMo 1ez, O BXL[ -1z, D11y VEI T 5P~17i5(z, £, y71E)
Yye
(5.3)
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with

Re(y™"¢) —Im(y""§) 0
[L;]:= | Im(y"""§) Re(y™"'§) 0
0 0 Iy IE

v~ V& denotes the complex derivative of y~! at & (y~' acts now in the
complex plane as a Mobius transformation.) We have

[LYBXILY} = BN (y™"§) (5:4)

with complex functions A*(z) defined by A(z) := A\(z) := 22 NS\(z) =
A%%(z) = 1z12, and NS(z) = A%3(z) = lzlz. The basis BX in (4.15) is chosen
so that A*(z,z,) = M(z:)N*(z,). Equation (5.2) may now be written as

Bz, 5 € 9)
= 2 oy el VB, OINGT DIV TIEIT PTG £9719)
Ye
= 2 B ny e NGy HIy (5.5)
YeE

The covering group acts here only on the boundary of H? in the complex
plane. From (5.5) we easily find

BT(z, 1, £ 5) = B (z, £; BE, M@/ IBEIT' 7 (5.6)
forall B eI i
It is easy to see that the matrix elements of BX(z, t; y~'&, s) are uniformly
bounded with respect to the elements of I'. We write A = — 1 — is. The
matrix elements of BXT(z, t; &, 5) are then bounded by
| BT < const- 21“ Iy E17H X))
ye

This bound is uniform for £ e Uf; (the f; denote free faces of F at infinity
of H3) and the series converges for Re(2 + \) > §; 3 is the Hausdorff
dimension of the limit set of I'. In the case that & > 1, we define the series
(5.2), (5.3), and (5.5) along the abscissa Re(\) = —1 by analytic continuation.

The orthogonality relation is easily verified, and is quite analogous to
that for vector fields [cf. equation (3.12) in Tomaschitz (1993)],

(BXT(s, &), B(s, &) = 2wRSsNE - £08(s —5')  (5.8)

Here (-, -)r denotes the Hilbert space scalar product on the 3-space (F, I),
as in (4.16), but now with the domain of integration H> replaced by the
polyhedron F.
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In the completeness relation there are two square-integrable fields if &
> 1. For X = §,, 84, we have
w:= lim \A\— &

A>(d-2)
- 2)) EF [z, OVBY ez, OIPP2(z, t; yE) 1y E12H (5.9
‘YE

We denote the normalized states by 4*. These states are not eigenfunctions
of (4.2); they emerge only if & > 1, and they are orthogonal to the states
generated by the BXT(¢,5), X € R, L, S,n=1,...,4),s e R, £ € Uf..
The completeness relation finally reads

> j doi(s, € B (z, t; & BN (2, 1 & 5)
RXUf;

XeRLSy

+ 4z, DEN, 1) + @54z, DN, 1)

= gu&udi(z, 7', 1) (5.10)

The spectral parameter £ ranges only over the free faces f; of F; the spectral
measure dog? is given in equation (2.14) of Tomaschitz (1993). [We have
put the expansion factor a(t), which is irrelevant here, equal to one.] The
transverse states are generated by BRT(£, s) and BUI(Z, 5). All other states in
(5.10) are orthogonal to them, and do not even solve (4.2). BRT and BT are
the circularly polarized states satisfying (4.23). [The spin operators (4.21)
and (4.22), together with the tetrad fields on the horospheres have to be
regarded as projected into the 3-manifold by the covering pI'O_]eCtIOIl 1

With the B*T in (5.5) one can construct wave packets as in (4.27). BX
is replaced there by the automorphic fields BT, and the domain of integration
of the spectral variable £ is Uf; instead of the whole plane R In practice,
however, one proceeds differently [cf. Tomaschitz (1994b)]. One starts with
a wave packet (4.27) in the covering space H> and projects it onto the 3-
manifold by periodization according to (5.1),

By = EF [v' By DY) .11)
Ye

The considerations on energy in Section 3 remain true as they stand, with
tensor fields B' defined on the multiply connected 3-manifold. Geodesic
motion in a gravitatlonal wave (5.11) is deﬁned as usual by the perturbed
RW metric g8 = g; + B3, gh' = —c% g§T =

6. THE ANALOGUE TO MAXWELL’S EQUATIONS

The Lagrange function (4.26) and the energy-momentum tensor (3.18)—
(3.20) are structured as in electromagnetic theory, and so it is very easy to
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derive the analogue to Maxwell’s equations on the spacelike slices of a
RW cosmology.
From the potential representation (2.7) we have

1
—8

€OWG,

owr =0 (6.1)

and

G, =L ewap g =0 (6.2)

1

T3 O = T
These identities can be derived by commuting derivatives and using the
symmetry properties of the curvature tensor. Here (—g)~2€“°*” is the totally
antisymmetric Levi-Civita tensor on the 4-manifold. In a RW geometry, with
B, fields satisfying the subsidiary conditions (2.12), (2.13), and (2.15), the
right side of (6.2) vanishes.

The wave equation (2.10) reads, under the given conditions (namely o
= B = 0, subsidiary conditions, and curvature tensor of a RW geometry),

Gpp? = 0 (6.3)

This wave equation and the identities (3.10), (6.1), and (6.2) are analogous
to the manifestly covariant Maxwell equations F,,” = 0 and (—g) "2
e M, = 0. The subsidiary conditions (2.12), (2.13), and (2.15) correspond
to the Lorentz condition A,* = 0 and the Coulomb gauge A, = 0.

To obtain the analogue of Maxwell’s equations on the 3-slices, we first
have to express the 4-dimensional covariant derivatives G,gys in (6.2), (6.3),
and (3.10) by covariant differentiation (|f) on the 3-space. This is done in
(A.7) and (A.8). Then we simply insert E and H via (3.15) and (3.17). From
the defining equations and the subsidiary conditions it is easy to see that Ej;

and H;; are symmetric and have vanishing trace, E;, = H; = 0.
From (6.2) (k = 0, p = I) we obtain
H™, =0 (6.4)
and from (3.10) (p = 0, v = n)
EfM=0 (6.5)
From (6.2) (k = k, p = ) we have
2 @Hb)o — e Eyy = 0 (6.6)

and from the wave equation (6.3) (p = [, v = 0) we finally obtain

1
Ve Hi™ + - Epne =0 6.7
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Equations (6.4)-(6.7) are the gravitational analogue to the vacuum Maxwell
equations in RW cosmology.

7. CONCLUDING REMARKS

We have constructed here a wave mechanics of linear gravitational waves
on RW background geometries. This wave mechanics is self-consistent as a
linear theory, and it admits a straightforward definition of a positive energy
density for wave packets. This is achieved by making extensive use of the
electromagnetic formalism.

The theory developed is not meant as a linearized theory of gravity.
There are no source terms in the evolution equation (6.3), which is designed for
gravitational waves freely propagating on the RW background. In background
metrics of lesser symmetry the electromagnetic formalism would break down,
because the subsidiary (gauge) conditions (2.12), (2.13), and (2.15) become
inconsistent with the wave equation. As in electrodynamics there remains
some gauge freedom in the wave equation, even with the three gauge condi-
tions imposed. We can easily find wave fields which satisfy G,,., = 0 as
well as the gauge conditions. In the case of vanishing curvature (e.g., a
Minkowski universe or RW cosmology with linear expansion factor and
negatively curved 3-space) we may simply choose B,, = ... Here £ is a
scalar independent of cosmic time which satisfies the Laplace-Beltrami equa-
tion on the 3-space. However, such solutions of the wave equation do not
correspond to gravitational fields. We defined the most general shape of a
gravitational wave packet in equations (4.27) and (5.11). These wave packets
propagate with the speed of light. The weight function in (4.27) must be
chosen so that B and its derivatives are square-integrable with respect to
the volume element of the 3-space. [If w(s, & X) is Gaussian with respect
to both spectral variables s and &, this certainly works out, in (4.27) as well
as in (5.11).] Then the wave pulse has a well-defined energy that scales with
the inverse of the expansion factor, a(t)E = const.

In the wave equation (2.9) we have ultimately chosen a = 3 = 0
because of the three conditions summarized in the Introduction. In the short-

wave approximation, Misner et al. (1973) put a = —1, B = 1; Isaacson
(1968) chooses a = B = 1 in this approximation scheme; Landau and
Lifshitz (1962) choose o« = 8 = —1. The linear wave equation is then only

approximately consistent with the three subsidiary conditions and/or the
requirement that the gravitational pulse propagates with the speed of light.
But for all these choices of a and § the authors come to the same conclusion,
namely that (4.27) is the generic shape of a linearized wave packet; cf. also
the discussion at the end of Section 4.
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In a RW cosmology linear gravitational waves exactly satisfy a wave
equation which is consistent with the gauge conditions imposed. The wave
equation is conformally coupled and makes it possible to treat linear gravita-
tional waves in close analogy to electrodynamics. We have demonstrated this
here by means of Maxwell’s equations, the energy-momentum tensor, and
the spin of wave fields.

I should finally mention that my initial motivation to design a self-
consistent linear formalism originated in the study of gravitational waves in
RW geometries with multiply connected spacelike slices, as outlined in Sec-
tion 5. The ‘method of images’ as indicated in (5.1) would give a fairly
uncontrollable result unless the periodized wave field is an exact solution of
the wave equation.

APPENDIX. THE CURVATURE TENSOR IN RW COSMOLOGIES
AND SOME EXPLICIT FORMULAS FOR COVARIANT
DIFFERENTIATION

The RW metric g,,, is defined as goo = —¢?, g; = a*(7)g;, and gy; =
0, where g; is a metric of constant curvature —1/R? on the 3-space (R may
be real, imaginary, or ). a(t) is the expansion factor. We denote the determi-
nant of g; by <y, Latin indices run from 1 to 3, and Greek indices run from
0 to 3. For g, we have the Christoffel symbols

n _ sn @ _ 1
om = Sma’ th = gktg A.D

QIR

The symbols with two and three zero-indices vanish in a RW geometry, and
the symbols with spatial indices I'; are time independent. Many calculations
of this paper are performed without specifying the sign of the curvature of
g; and without a special coordinate representation of the 3-space. Only in
Sections 4 and 5 do we assume that the 3-space has negative curvature (R
> 0), and we use there as coordinate representation the Poincaré half-space
H?, with rectangular coordinates (x;, x, 1), t > 0, and g; = R%r 2, (cf.
Tomaschitz, 1993, 1994a,b).

The nonzero components of the Riemann tensor [with sign conventions
as in Landau and Lifshitz (1962) and Misner et al. (1973)] are

i 1 42 a
Rigmn = (_'5 -3 ‘?)(gknglm = &im&in) Rown = ~8mn p (A2)

All other nonvanishing components can be obtained by using the symmetry
with respect to the interchange of the first and second index pair and the
skew-symmetry within these index pairs.
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The nonvanishing components of the first covariant derivatives of the
Riemann tensor are

af 1 142 1d
Rimnp = —2 2 (R_ZZIE -2 ;‘2 = ;)(gknglm 8im&in)
af 1 1 a2
ROlmn;i = _-a— (EE‘;E - ? a_ )(gmglm gzmgln)
d [d
Roionp = _d_ <_)gln (A.3)
T \a
The nonvanishing components of the Ricci tensor read
-2 1d 1 & a
Ry, = gm(ﬁ ta,t23 ;) Ry = —3- (A4)
Its derivatives are
1 lda 142 dd
Ry, =2 —t - - == , Ryo= =3 — -
Omt = “8in ', (R 202 cta ¢ a2) 00:0 3 dra
af 1 1la 142 1 did
Rio=8ml|ld-" 55 +5—-——== + —_—— A5
0 = 8 [ a (Rza2 cta ¢ a2) tdr a] (A-5)

All other components vanish or can be obtained by the symmetry in the first
and second indices.

Next we give some formulas which relate four-dimensional covariant
differentiation (RW metric g,,) with covariant differentiation on the spacelike
slices (metric g;). In a RW geometry this is comparatively simple, because
® = I'®, ie., the Christoffel symbols I'® of the 3-metric g; coincide
with the Christoffel symbols I'® (with spatial indices) of g,,. Therefore we
can drop the superscripts (3), (4). We denote three-dimensional covariant
differentiation on the 3-slices by a double stroke (|[). A subscript comma
followed by zero denotes ordinary differentiation with respect to cosmic time
. If B,,, is a symmetric tensor field on the 4-manifold, then B,,, is a symmetric
tensor field on the 3-slices, By,, is a 3-vector, and By, is a scalar on the 3-space
of the RW cosmology (7 is then regarded as a parameter labeling the 3-slices,
and we consider coordinate transformations on a given 3-slice). We have

1a 1a a
an;l = anlll - glmBnO - gIanOs an‘,O = an,O —2- an
ca ca a
a 1a a
By = Buoy — 2 By, — 22 &imBoos B0 = Buop — 2 B,

a
Booy = Booy — 2 2 By, Boop = Boop (A.6)
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All other components can be obtained by the symmetry in the first two indices.
For the G field defined in (2.7) we have as nonvanishing components

1a 1 a
Gimn = By — B + 22 8inBowm — Za 8imBon

a 1a
Gimo = Bioymn — Bimo + = Bim — = = &mBoo
a a

a
GOmn = BOnllm - BOmIIm GOmO = BOOHm - BOm,O - ; BOm (A7)

G is of course skew in the last two indices. For its derivatives we have

l a 1a 1a
Gl = Glmnllk gkIGOmn - _2 = 8mGion — - 8inGimo
a cca
1a 1 a
Gomnx = GOmnlIk - kan - ? ~ 8imGoon — gknGOmO

a a
Glmn;O = Glmn,() -3 E Glmm GOmn;O = GOmn,O -2 ; GOmn

a 1a a
Gionye = GIOnIlk — =Gy — S 8uGoon, Giono = Gunp — 2 = Gy,
a cca a
a a d
Goone = Goonpe — p Gion — p Goins Goonse = Goono — 4 = Goon  (A8)

All other components are zero or can be obtained from the antisymmetry in
the second and third indices.

To perform the time separation in the wave equation (cf. Section 4) one
has to express the tensorial d’Alembertian B,,.,,”* by covariant derivatives
on the 3-slices,

. 1 14 14
an;a’ = an“k"k hd (? Bm,,,(),() + ;2’ ; an,O -2 g 5 (BOnllm + BOmIIn)
1 & 1d 1d®
+2=5=B,,+t2—~-B,, +2— un B
2a 2a 4 2 8mnDoo
1 a 1a 1d
Bom:a™* = BOm||k" - ? BOmO() -2- Bmk"k -3 BOm,O + B B()m

a @ 1 d?
_;BOO,O_4;Bokm+2;3kk+6c_2”a_2300

(A.9)
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Here B,.*, Bon*, and Byoy¥ are the tensorial, vectorial, and scalar Lapla-
cians on the 3-slices. We now evaluate these Laplacians for the case that
the 3-slices are a(t)-scaled copies of hyperbolic space H* [metric g; =
a*(T)R%%;)). The Christoffel indices are

M3 =T)=Th=-T% = T} = - (A.10)

all other three-indices are zero or obtained by interchanging the lower indices.
We obtain

@R*Byl* = PAgBy — 2Bpy + 2B338,, + 3tBuys — 21(Bsym + By
a2R233n“k"" = PAgBy, — 5Bs, — 2tBy3, + 3tB3,3 + 26(B\,, + Bay,2)

@*R*By3* = PAgBy; + 3tBys3 — 4By3 + 2(Byy + By) + 4(Bis, + Bys)
@R*Boy* = #AgBy, — 2B, + tBy,3 — 2By,

a*R*By* = PAgBys — 3By + t(2Bo1; + 2Boys + Boss)

@R?Bog® = PAgBoy — 1Boos (A.11)

The subscript comma indicates as always ordinary derivatives, and the sub-
scripts 1, 2, 3 denote differentiation with respect to x,, x,, and t, respectively.
The indices n, m run in (A.11) only over 1, 2. Here Ag := 82, + 92, + 97
is the scalar Euclidean Laplacian in the half-space H>.

The components of the 3-divergence in (4.8) read

aszBmkuk = tz(Bml,l + Bm2,2 + Bm3,3) - th3
@R*By}* = (B3, + By, + Byyz) + 1By + By) (A.12)

m runs here again only over 1, 2.
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