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Linear Gravitational Waves and Electrodynamic 
Formalism in Cosmology 
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The propagation of linear gravitational waves is studied in open and multiply 
connected Robertson-Walker cosmologies. In order for the group velocity of the 
gravitational wave packets to coincide with the speed of light, the linear wave 
equation must be conformally coupled. This opens the possibility of using the 
electromagnetic formalism. The gravitational analogue to the electromagnetic 
field tensor is introduced, and a tensorial counterpart to Maxwell's equations 
on the spacelike 3-slices is derived. The energy-momentum tensor for linear 
gravitational waves is constructed without averaging procedures, a strictly positive 
energy density is obtained, and it is shown that the overall energy of a gravitational 
pulse scales with the inverse of the expansion factor. 

1. I N T R O D U C T I O N  

The high degree o f  symmet ry  of  the Robe r t son -Walke r  (RW) line ele- 
ment  offers an approach to linear gravitat ional waves  in close analogy to 
electrodynamics,  a tensorial version of  Maxwel l ' s  theory. The  very great 
advantage of  this cosmologica l  background geomet ry  is that a posit ive energy 
density can be derived for  gravitat ional pulses without using the averaging 
procedures necessary in the standard theory of  l inearized gravitat ional waves.  

The  starting point o f  the standard theory is the linearization of  the Ricci 
tensor. In the linear wave  equation derived in this way one usually drops 
some curvature terms on the grounds o f  smallness considerations,  on which 
I will not expand here. So the linear equations discussed in the literature 
differ somewhat ,  depending on the terms actually dropped ( I s aac son ,  1968; 
Misner  et  al.,  1973; Landau and Lifshitz, 1962). At any rate, they are, as 
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linear equations, inconsistent either with the gauge conditions imposed or 
with the requirement that the wave packets move with the speed of light. In 
passing, we will demonstrate this very explicitly in RW cosmologies. The 
usual argument, that these inconsistencies are of higher order in certain 
heuristically defined expansion parameters, does not change anything, and 
they become a real obstacle if one studies gravitational waves in multiply 
connected RW cosmologies with noncommutative covering groups, as we 
will do here. 

In this paper we choose a very different approach in the context of RW 
background geometries. We derive a linear wave equation which is (1) invari- 
ant with respect to infinitesimal coordinate transformations in the Minkow- 
skian limit (i.e., when spatial curvature and expansion rate approach zero), 
(2) consistent with the gauge conditions (Lorentz condition, trace condition, 
and requirement that t ime-time and space-time components of the wave 
field are zero), and which isdesigned in such a way that (3) group and phase 
velocities are identical with the speed of light. This wave equation turns out 
to be conformally coupled. It can be derived from the Lagrangian L~ = 
-~--0~--I ~ ~P~, with Go~,, = Bo,,. ~, - Bp~.~.. Geodesic motion in a linear gravita- 
tional wave B ~  is then defined with respect to the metric gRW + B ~ .  

From the structure of L~ it is not surprising that we can formulate the 
theory as a tensorial analogue to electrodynamics. In particular the energy 
density can be defined as p = �89 2 + B2), with E z := Ei jE  ij and B 2 := BijB ij, 
where Ev and Bij are symmetric tensors on the 3-space of the RW geometry. 
We thus arrive at a well-defined positive energy density and a conservation 
law aa('r)p = const, with a('r) the expansion factor in the background 
metric RW g~,, �9 

This paper is organized as follows. In Section 2 we derive a certain 
class of linear tensorial wave equations, discuss Lagrangians for them, show 
their compatibility with the gauge conditions usually imposed on gravitational 
waves, and point out their relation to the linearized Ricci tensor. In Section 
3 we discuss the definition of the energy-momentum tensor, the positivity 
and conservation of energy, as well as the speed of wave propagation, and 
select on the basis of these criteria the wave equation suitable to describe 
freely propagating linear gravitational pulses in the RW geometry. 

In Section 4 we discuss the time evolution of wave fields and the spectral 
theory of the wave equation in simply connected, open RW cosmologies with 
negatively curved spacelike slices. We also consider in this context the spin of 
wave fields and the composition of wave packets from the spectral elementary 
waves. In Section 5 we discuss wave propagation in RW cosmologies with 
multiply connected spacelike slices. We introduce automorphic tensor fields 
and sketch the orthogonality and completeness relations for the spectral 
elementary waves. In Section 6 we finally derive the tensorial analogue of 
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Maxwell's equations, at first manifestly covariantly, and then in terms of 3- 
tensors on the spacelike slices. In the Appendix we list some explicit formulas 
for the curvature tensor and covariant derivatives in RW geometries. 

2. LAGRANGIANS FOR LINEAR GRAVITATIONAL WAVES 

In Minkowski space the most general Lorentz invariant Lagrangian that 
leads to a linear wave equation for a symmetric tensor field Be, is 

L = --~{K|B~;KB ~'K + K2Bo.v;KB~ + K3B~,:KBx ~'x + K4u~,~oXOK u~,~ 

moo B,,Bx } (2.1) + u ~  oh,, + moB~,,B~,,  + ~ x K5UK;V JU ;k 

It is second order in the Br and contains no higher than first-order derivatives. 
We obtain the wave equation 

OB ~ 

B ;~ 1 K ,, B ~ = KI ~tv;X + ) 'K2(B~ ;v;K + B~ ;r + J ;~ ~-K3(BK~. ;v + ~v' ;~) 

-~Ks(B,,;~;v + ;x;,~,~,, -- m o o B K g ~  + K4B~;~ g~,, + -- moB~,,  (2.2) 

We wrote (2.1) and (2.2) in terms of  covariant derivatives, and did not 
interchange derivatives. So these equations hold true in an arbitrary curved 
space. L is then the most general covariant Lagrangian which does not contain 
curvature terms (i.e., the Riemann curvature tensor and its contractions). 

In Minkowski space, g,~ = diag(-1,1,1,1),  we require that the wave 
equation (2.2) is invariant with respect to gauge transformations B ~  ---> B ~  
+ ~,~ + ~,~, with an arbitrary vector field ~ .  In order that B ~  := ~ , ,  + 
~.~ is a solution of (2.2) we must have K2 + K3 = --2Kb K5 = 2Kl, K 4 = 

--Kb and m0 = moo = 0. We assume these relations also in a curved space; 
cf. Remark 1 below. Clearly, K1 r 0, and we may choose, without loss of  
generality, KI = 1. The wave equation (2.2) can now be written as 

- B  " :" B '~ + K2B~xR,~ x B~;x ;x ( K~;~+BK~ ;~)+  K;~;~ ~, 

at_ ! h -ffKz(R~xB ,, + R,xBX~) = 0 (2.3) 

We interchanged here covariant derivatives, 

B ;x + ;x ~x;,, B,,• '~ = B~x ;~, + B,,x;x;~ + 2 B ~ •  x + R~,BX~ + R ,xBX~  

(2.4) 
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[with sign conventions for the Riemann and Ricci tensors as in Misner et  
al. (1973) and Landau and Lifshitz (1962)], and used the contraction of 
equation (2.2), 

B~;x 'x = B~x ;~;x (2.5) 

Remarks .  1. In a curved space, B ~  := ~,;, + ~;~ is no longer a solution 
of  the wave equation (2.3). This gauge invariance is only recovered in the 
limit of vanishing curvature; in a RW cosmology this is the case in the limit 
of slow expansion, a/a ~ O, iila ~ O, and large spatial curvature radius a(r)R; 
cf. the Appendix. 

2. For K2 = --2, the left side of equation (2.3) is -gRlin where Rlin is ---*~v, =*~,v 

the linearized Ricci tensor with the RW metric as background and B ~  as the 
linearized fluctuation. We will later see that only the value K2 = -- 1 corres- 
ponds to conformal coupling and a wave propagation at the speed of light. 

Let us next consider the Lagrangian 

_ •  ~ - �89  _ * ~ o  u~,u~• (2.6) L G  : = 4 ~K lXV~  "~I, JI~,~K~.VU o 

with 

G ~  := B~;~ - B~:~ (2.7) 

This tensor, which is the key to the electrodynamic formalism, was introduced 
in Fierz (1939). Lc is evidently not of the form (2.1), because it contains 
curvature terms. We have then as Lagrange equations 

_ (  ~Lo I ~La 
0 = \~B,,~;.j;.y + 8Br 

I ;k 1 k = B~v,X ;x - T(Bx~;~ + Bx~;~ :x) - ~et(R~xB ~ + R~xBX~) -- f$BKXR~Kxv 

(2.8) 

Using equation (2.4), we obtain 

B~;x ;x - (1 + [3)BKxR~ x - � 8 9  + ct)(R~xBX~ + R~xBX~) 

1 ;K B ;K - ~ - ( B ~  w + ~ ,~) = 0  

and with (2.7) we may write this as 

_ i ;v - �89 + R~xBXp) - ~ R v o ~ B ~  = 0 Gpw ;~ -~G~w 

G~w;v -- Rpx B• - Rvh Bhp + nvx;h;o - Bph;X;v 

Equations (2.1)-(2.11) 

(2.9) 

(2.10) 

(2.11) 

were formulated in an arbitrary Riemannian 
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space. From now on we assume a RW geometry, with a curvature tensor as 
defined in the Appendix. 

We search for solutions of  equation (2.9) which satisfy the trace and 
transversality conditions 

B~ = 0 (2.12) 

B ~  ;~ = 0 (2.13) 

In order that these conditions are consistent with the wave equation (2.9), 
we must require ot = 13, which follows immediately by contracting equation 
(2.9). Moreover, we see that the wave equations (2.3) and (2.9) are identical 
if we put 

a = 13, K2 = - ( 1  + oO (2.14) 

and impose the subsidiary conditions (2.12) and (2.13). From now on we 
assume the identification (2.14). 

In a general Riemannian space the subsidiary conditions (2.12) and 
(2.13) are not consistent with the wave equations (2.3) or (2.9), but in a RW 
geometry they are. Moreover, we can impose on the solutions of equation 
(2.9), in addition to (2.12) and (2.13), 

B~0 = 0 (2.15) 

To see that equations (2.9), (2.12), (2.13), and (2.15) are mutually consistent, 
one may use the explicit formulas for the curvature tensor in the Appendix, 
and the v - p~ contraction of the identity 

B ;o~ =_ B ;o~ + 2B,~,,.o~R,~p,o, + 2Bp~;~RKv ~ + Bo~,;,~RK pv;l~;Ct pv;cx ;Ix , 

+ B~(R~;p - R~p ;~) + Bp~(R~;~ - R~, ;~) (2.16) 

which holds true, by the way, in every Riemannian space. To obtain equation 
(2.16), one uses the commutation rules for covariant derivatives and the 
contracted Bianchi identity. 

The Lagrangians (2.1) and (2.6) lead to identical wave equations under 
the indicated conditions. However, it turns out that L~ in (2.6) is the appro- 
priate choice for the construction of the energy-momentum tensor. 

3. E N E R G Y  OF LINEAR GRAVITATIONAL WAVES 

Throughout this section we assume a RW geometry as defined in the 
Appendix. In this context we define energy for wave packets satisfying the 
wave equation (2.9) and the subsidiary conditions (2.12), (2.13), and (2.15). 
In contrast to less symmetric space-time geometries, one need not resort to 
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averaging procedures (e.g., Misner et al., 1973) to define energy. Rather, we 
will proceed in quite a similar way as in electromagnetic theory. 

Using standard Lagrange formalism, we start with the tensor 

gLG 
7"~ := -~B~,~;----~ B'~ts'~ + g~vLc = -G~B~'~;~  + g ~ L ~  (3.1) 

with La as in (2.6) [13 = et; cf. (2.14)]. 
To symmetrize ir~, we add a divergence 

T ~  := (G~B~,~);~ = G ~ B ~  ;~ + �89 + GP~;~Bo~) (3.2) 

[The tensor Go~;~Bp~ is symmetric, which follows from the wave equation 
(2.10) and the subsidiary conditions.] Under these conditions we have 

t �9 T ~  "~ = B~;~B~XR• (3.3) 

We define the energy-momentum tensor for solutions of the wave equa- 
tion (2.9) which satisfy the three subsidiary conditions as 

T ~  = T ~  + T'~ = G ~ G ~  + �89 + Gp~v;~BP~) 

~ •  R ,,n~,p + � 8 9  - g~(�88 + 2~ .~p-  ~ - -  

(3.4) 

By means of the field equations (2.10), the subsidiary conditions, and the 
explicit formulas for the curvature tensor in the Appendix, we may write 
(3.4) as 

= + ( 3 . 5 )  

T ~  := G ~ G ~  - ~ ~ ~ -~s~v'-'~,~'-' (3.6) 

T~o := �89 + ~ a ~ BabB ab (3.7) 

o r ( - 3  1 ii 1 a=\ I - ggmnBabB ) (3.8) T ~ : =  ~ + - - -  + 3 i ab C 2 a -~ -~] (BmlBln 

TBm0 := 0 (3.9) 

The divergence T~v ;~ is straightforward to calculate. It is convenient to replace 
Gp~r by Gpa,'aB% and to eliminate Gp~ '~ by means of the field equations 
(2.10) before differentiating equation (3.4). Note in particular that 

G~w;~ = 0 (3.10) 

1 / " 2 _  / ' 2 '  e t  1 3 I x  G ~ G ~ ; ~  - ~-,-,,,~:~,_, = 0 (3.11) 
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because of the subsidiary conditions and the special structure of the curvature 
tensor in a RW geometry. We finally obtain, using the contracted Bianchi 
identity, R%vp;r = R a p ; v  - -  R~.,t; p, 

T~.,, ;~ = -�89 + R,,,~x;,,B"XB '~) (3.12) 

and thus 

I (  1 Tp.o  ;p~ = - l o ~ n m n n m n  6 ~ R-~a 2 
1 a l d  2 ) l__d_d//] 

+ cZ a c2- ~ + c2 dr a j (3.13) 

T j  ~ = 0 (3.14) 

If a = 0, or if the Riemann tensor is covariantly constant, R,,~;w = 0, then 
TCv satisfies the differential conservation law Tr ;~ = 0. 

Remark. RW cosmologies that admit a ten-parameter group of continuous 
symmetries (and in particular boosts that mix space and time) are characterized 
by an expansion factor which satisfies 

l a  l a  2 1 
C 2 a c 2 a 2 a2R 2 

and, as a consequence, 

d d  
- 0  

d"ra 

We refer in the following to such cosmologies as of de Sitter/Minkowski 
type. Well-known examples are a('r) = sinh(cR-l'r), R positive; a(-r) = 
cosh(clRI -l'r), R imaginary; a('r) = sin(cR-l"r), R positive; a('r) = exp(A-r), 
R = co, A is a constant; a('r) = cR-1% R positive (a fiat 4-manifold); a('r) 
= 1, R = ~. A positive curvature radius means negatively curved spacelike 
slices in our notation; cf. the Appendix. These geometries have a covariantly 
constant curvature tensor. The only RW cosmologies with this property are 
either maximally symmetric or static (a --- 0); cf. (A.3). 

The structure of T ~  in (3.6) is reminiscent of electromagnetic theory. 
We can introduce symmetric 3-tensors E,,n, H,n, on the 3-space of the RW 
geometry by defining 

Emn := c-lG,,,,,o (3.15) 

1 ,  v -  l /2rnij(7 ~ .. 
Hm n : =  2 1  ~ v m #  J (3.16) 

and inversely, 

Gmij = ~l/2EijkHmk (3.17) 
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Latin indices run from 1 to 3, Greek ones from 0 to 3. The metric g0 on the 
3-space is defined at the beginning of the Appendix; ~/denotes its determinant, 
and ~,U2eOk and ~/-U2e0k are the totally alternating co- and contravariant Levi- 
Civita tensors on the 3-space. It is understood that Gp~v defined in (2.7) is 
composed of Br which satisfy the subsidiary conditions (2.12), (2.13), 
and (2.15). With E 2 := EijE ij and H 2 := HijH 0 we may then write 

T~o = �89 2 + n 2) (3.18) 

T~,, = �89 2 + H2)gmn - HlnHl,n - ElnElm (3.19) 

T~o = r (3.20) 

Clearly, T~o is positive definite, but the energy density Too of the wave field 
is composed of T~o and T~o, and T~o need not be positive for an arbitrary 
expansion factor; cf. (3.7). However, if ct = 0, which corresponds to a 
conformally coupled wave equation (cf. Section 4), we have T ~  --- 0, and 
thus a positive energy density Too = T0%. 

Note that in the Lagrangian (2.6) the et term (et = 13) explicitly reads 
1 Ixp v ~ot(R~B Bp -t- R~ ,g ,B~B ~)  = c2T~o (3.21) 

with T~o as in (3.7). In the static case, a = 1, and with negative ct this is 
just a mass term, (me/h) 2 := -3et]R 2. In maximally symmetric background 
geometries T~o is also a constant multiple of BuB~ cf. the Remark after 
(3.14). For ot = 1 the wave equation (2.9) with the subsidiary conditions 
(2.12), (2.13), and (2.15) is equivalent to the linearized Einstein equations; 
cf. Remark 2 after equation (2.5) and the identification (2.14). A positive c~, 
however, corresponds to an imaginary mass term (if ti = 0) and to superlumi- 
nal velocities; see also the discussion after equation (4.25). This mass term 
is very tiny, and may be dropped in the linear approximation (Isaacson, 1968; 
Misner et al., 1973; Landau and Lifshitz, 1962). In RW cosmology this means 
that we replace the linearized Einstein equations by the conformally coupled 
wave equation (2.9) (or = 13 = 0). This linear wave equation ensures that 
linear gravitational waves propagate exactly at the speed of light and admit 
an energy-momentum tensor (3.18)-(3.20) in perfect analogy to vacuum 
electrodynamics. In the next two sections we will discuss the explicit construc- 
tion of linear gravitational pulses by means of this wave equation. 

4. COMPOSITION OF LINEAR GRAVITATIONAL WAVES 

In this section we sketch the spectral theory of the wave equation (2.9) 
(et = 13) in a RW background metric with negatively curved spacelike slices. 
As in Section 3, we assume that the wave solutions of (2.9) satisfy the 
subsidiary conditions (2.12), (2.13), and (2.15). 
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To perform the time separation, we express the d'Alembertian in (2.9) 
in terms of covariant derivatives (11) on the 3-space; cf. (A.9). Taking into 
account the subsidiary conditions and the explicit formulas for the curvature 
tensor in the Appendix, we obtain from (2.9) 

1 B  l a  
Bmn[l~ Ilk -- -~  mn,O,O ''[- --C 2 a-B,~,o  

1 1 1 d 2 1 // a ) ]  
+ B , , ,  3 ~ - ~ ( 1  + o r ) -  ~ 5 ~ ( 1  + 3or) + ~5 a (1 ] 0 (4.1) 

The comma followed by a zero means ordinary differentiation with respect 
to cosmic time ~-. The space-time and time-time components of the wave 
equation vanish identically. 

With the separation ansatz Bran = : q)(~)nm, we obtain from (4.1) 

^ k 
a2Bmnllk 1~ + -'~ nmn = 0 (4.2) 

and 

q~,o,o - a q~,o + q~ (h - 3 - 3ct) ] + ~ (1 + 3e0 - - (1 - ~x) = 0 
a 

(4.3) 

h is the separation constant. Note that the 3-space metric g;j scales with aZ("r), 
so the Laplacian nmnllk Ilk o n  the 3-space scales with a-2('r); cf. (A.11). 

We define now A := c lR  (with R > 0), h =: 3 + s 2, and q~ =: ~ a  In. 
Instead of (4.3) we have then 

+ t~  ~-~(s 2 -  3 a ) + ~ 5  + 3oL - a -  - a = 0  (4.4) 

If a = 0, B ~  conformally scales with the expansion factor, since we obtain 
as solution of (4.4) 

t~+_ = a 1/2 exp[~ iAs  I ~ a-I('r) d r ]  (4.5) 

for an arbitrary expansion factor a('r). 
In the static case, a('r) = 1, we have as solution of (4.4) 

~J_+ = exp[-Y-iA,4~ - 3or "r] (4.6) 
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In the case of linear expansion, a('r) = A-r, cx drops out in equation (4.4), 
and we obtain 

~_+ = (Ax)~-is+ 1/2 (4.7) 

as a pair of fundamental solutions. 
Let us now turn to equation (4.2), with h = 3 + s 2. The subsidiary 

conditions (2.12), (2.13), and (2.15) impose restrictions on the solutions, 
namely 

B~ = 0, Bmn IIm = 0 (4.8) 

They are consistent with equation (4.2), because 

2 B k  4 
B,nnllk Ilklln = Bmnllnllk I~ + g-~a 2 k IIm R2aZ Bmk llk (4.9) 

[cf. (2.16) and the formulas for the curvature tensor in the Appendix]. 
In order to determine the spectral resolution of equation (4.2) under 

conditions (4.8), we have to specify the spacelike slices. We assume that 
they are a('r)-scaled copies of hyperbolic space H 3, as defined at the beginning 
of the Appendix. The tensorial hyperbolic Laplacian in (4.2) and the diver- 
gence in (4.8) are explicitly evaluated in (A.11) and (A.12). 

We start with the ansatz 

Bi j ( s  ) : =  n i j ( t ]R)  - 1 - i s  (4.10) 

where Bij is a constant symmetric matrix. In order for [~ij(s) to satisfy equations 
(4.2) and (4.8),/]ij must be a linear combination of the two matrices 

~(1)  . =  - 1  , /~(2) : =  0 (4 .11 )  

0 0 

We generate a complete set of eigenfunctions by applying symmetry 
transformations of the 3-space metric gij [defined after (A.9)] to Bij(s). It is 
convenient to use for the H 3 coordinates (xn, x2, t) complex notation (z := 
xl + ix2, t). We consider the Mrbius transformation cx~(z) := (z - 6) -l 
in the complex plane (6 = 6t + i62) and lift it to H 3 (Beardon, 1983; 
Ahlfors, 1981), 

R 2 
a~: (z, t) ---> Iz - 612 + fl (z - 6, t) (4.12) 

This coordinate transformation leaves gij invariant. If we apply it to/~,-j(s), 
we obtain 

~ ' k t l - l - i s  nij(Z , t; 6, s) (4.13) n i j ( t ]R)  - l - i s  ~ Bkl[Ot~]i[ot~]~P (z,  t) = :  
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with the Poisson kernel P(z, t; t~) :=  Rtl(Iz - ~12 + t2). The  Jacobian [ot~] 
of  at(z,  t) explicitly reads 

R 2 
[oLd] = ( I z  - ~12 + t2)2 

__(X -- 61)2 .~_ (X 2 --  62)2 .~_ /2 

2(xl - 61)(x2 - 62) 
-2 (x l  - 61)t 

-2 (x l  - 60(x2 - 62) - 2 ( x l  - -  61)t~ 
- - ( X l - - 6 0 2 + ( x 2 - 6 2 )  2 -  t 2 2(X2--62)t  | 

--2(X2 -- 62)t IZ -- 612 -- f l /  

(4.14) 

In the fol lowing we will often use matrix notation, e.g., /)(z, t; 6, s) = 
[et~]tB[oL~]P-l-is(z, t; 6). Because  ere(z, t) is a symmet ry  t ransformation of  the 
metric, B(z, t; 6, s) is a solution of  equations (4.2) and (4.8). 

We consider the vector  space of  all symmetr ic ,  complex,  three-by-three 
matrices with scalar product  (.4, B) :=  Tr(AB), and choose an or thonormal  
basis as 

i i) (o1 i i) = - 1  , /~L = 1 1 
BR ~ 0 2 0 

= 1 , /~s2 = ~ 0 
/~st ~ 0 i 

l(! o (i o!/ /~s3 = ~ 0 i , /~s4 = 0 

- - i  0 

(4.15) 

In the fol lowing we denote these matrices by/~x;  X ranges over  (R, L, Sn, n 
= 1 . . . . .  4) . /~n and/~L are linear combinat ions of /~o)  and/~2).  

Next  we consider the Hilbert  space o f  complex,  symmetr ic  ( three-by- 
three) matr ix-valued functions on H 3, with the scalar product  

(,4, B)H3 :----- ~ a -3 dVn3 (A(z, t), B(Z, t))H3 
J.  3 

(A(z, t), B(Z, t))n 3 :=  aagUgklAik-Bjt (4.16) 

dVH 3 :=  a3R3t -3 dXl dx2 dt is the volume element  o f  the 3-space.  
We define [cf. (4.13)] 

BX(z, t; 6, s) :=  [et~]tBx[ct~]P-l-is(z, t; 6) (4.17) 

with X ~ (R, L, Sn, n = 1 . . . . .  4), s ~ R, ~ ~ C. This function sys tem 
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constitutes a complete orthogonal set. In fact, a series of matrix multiplica- 
tions gives 

= e~pl+is,, ~,)~xY (BX(z , t ;~ , s ) ,Br (z , t ; { ' , s ' ) ) i~3  Pl- i~(z , t ;~)  tz, t; + O(1{ - {'1) 
(4.18) 

from which orthogonality follows [cf. equations (2.10) and (2.13) in Tomas- 
chitz (1993)]. To prove completeness, we only note that the analogue to 
equation (2.16) in Tomaschitz (1993) is 

t; 
X ~ ( R,L,Sn) 

= ~ik~jiR4t-2t'-2pl-is(z, t; {)Pl+i~(Z', t'; ~) + O ( I z  -- Z'I + It -- t ' l )  
(4.19) 

The subspace generated by BX(z, t; {, s), X = R, L, comprises a complete 
set of solutions of (4.2) and (4.8). The /~R.L factorize, 

IBX(z, t; f;, s) = bXii(z, t; ~)bjYj(z, t; ~)P-t- i~(z,  t; ~) (4.20) 

with bX(z, t; ~) "=/~,x[a~(z,- ' t)], /~R := (1/,r i, 0), and/~L := (I/v/~)(i, 1, 
0). If ~ = c~, then [a~(z, t)] is the identity matrix, and P = t/R. 

Concerning the spin of wave fields, the discussion is quite analogous 
to that for spin-one-half particles (Tomaschitz, 1994a), and we also sketch 
that very briefly. We define three contravariant vector fields ~l(t) = ( - 1 ,  0, 
O)tt, ~z(t) = (0, - 1, O)tt, and ~3(t) = (0, O, - 1)it on the horospherical wave 
fronts issuing at ~ = oo; they are Euclidean planes parallel to the plane at 
infinity (t = 0) of H 3. We write ~,-; the subscript / labels  the triad vector, the 
superscript k its components. The spin operators Em on these wavefronts read 
(Corson, 1953) 

~m~kl : :  ~Smk l  "~- ~kami j (4.21) 

The Sm are the three spin operators of  the electromagnetic field, 

^ �9 h 1 , r  ' Sm'j : =  7 (: h 1 0 
= it 0 

(4.22) 

(The appearance of h is merely symbolic in this classical context.) We have 
the usual commutator relations ~i~j  - -  ~ j ~ i  = ih( l l R a ) , / ~ o k ~  k. We define 
the spin projections onto the triad vectors as S(i) := Sm~" and ~(i) := 
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The bR'L(Z, t; ~) as defined after (4.20) represent two circularly polarized 
states of the electromagnetic field, S(3)b R = hb R, ~{(3)b L = - h b  L, and we 
have now analogously 

E(3)/~ R = 2h/~ R, E(3)/~ L = -2h/~ L (4.23) 

Note that the ~(i)/~R,L, i = 1, 2, are in the orthogonal complement (generated 
by the/~s~) of the transverse subspace (generated by /~R,L). The expectation 
value of 2~(3), which gives the projection of  the spin in (or opposite to) the 
direction of propagation, is (Bjorken and Drell, 1964) 

(orb R + 13B L, ~(3)(o~B R + 13BL))n3 c~21B R 12 _ 1321BL 12 
I o ~ R  + ~ L ] 2  = 2h ot21/~Ri 2 + [321/~LI 2 (4.24) 

The scalar product is defined in (4.16), l/~Xl 2 := (/~x, /~X)H3. 
Finally we define spin on an arbitrary horosphere P(z,  t; ~) = const. 

The triad vectors on this horosphere have the components e~ = 
[a~(z, t)]j-lt~(ot~(z, t)) [cf. equation (4.2), in Tomaschitz (1994a)]. The horo- 
spherical spin operators are S,,~ : =  Snkl[o~]~[OL~]kli[oL~] I, and X,, is as in (4.21) 
with Sm replaced by Sm. The spin in the direction of em is defined as X(m) 
= Xee~, and (4.24) holds true with the obvious replacements. 

Let us consider a plane wave propagating along the t axis. With a(-r) = 
1 and ~_+ as in (4.6), we have 

Bij = Bii(t/R) -1 exp i [ - s  log(t/R) ~ A ~  "~ - 3o~ "r] (4.25) 

The phase velocity is obtained by equating the differential of the phase to 
zero, Ivphl = a(T)Rt- l ld t /d 'c l  = c l s l - l ( s  2 - 3cx) 1/2. To obtain the group 
velocity, we have to differentiate the phase with respect to s before calculating 
the differential, I Vgr I = c I s I (s 2 - 300- u2. If  we agree that gravitational 
waves propagate with the speed of light, then a must vanish; cf. the end of  
Section 3. The B field is then conformally coupled [cf. (4.5)] and the energy 
density is strictly positive [cf. (3.18)]. The Lagrange function (2.6) reads 

1 2 L~ = -~,-,K,~f~,-,1 t-z_ c:_,~,~ = -~(E - H z) (4.26) 

E 2 and H 2 as introduced in (3.18) scale with a-4('r) and so does the 
energy density. 

The general shape of a wave packet is obtained as a superposition of 
the spectral elementary waves q~+/~x, with/~x as in (4.17) and tp+ as in (4.5) 
(q~+_ = ainU+_). We have 

= Re ( ds d~ ~ (w+q~+ + w_q~_)BX(z, t; ~, s)w(~, s, X )  (4.27) B~ 
)R 3 X=R,L 
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w• are arbitrary constants and w(s, ~, X)  is a weight function that makes 
B,~ square-integrable. 

5. GRAVITATIONAL WAVES IN A MULTIPLY C O N N E C T E D  
RW C O S M O L O G Y  

We outline the spectral resolution of the B field for the case that the 
spacelike slices are multiply connected, open, hyperbolic manifolds [cf. the 
review by Tomaschitz (1996)]. We assume that the covering group F is of 
Schottky or quasi-Fuchsian type. The spectral theory of equations (4.2) and 
(4.8) is a straightforward extension of the spectral theory of the electromag- 
netic field. The formalism and the notation used in this section are explained 
in Tomaschitz (1993, 1994a). 

We study automorphic tensor fields (Poincar6 series) of the type 

B F = ~ [~/']/kBk,(~/(Z, t))[~/']J (5.1) 
-/EF 

where nk l (Z  , t) is a symmetric tensor field in H 3. In the following we use 
matrix notation throughout. Br(z, t) denotes a tensor field on a hyperbolic 
3-manifold (F, F). F is a fundamental polyhedron in H 3, and B r satisfies 
periodic boundary conditions on the polyhedral faces; we have Br(z, t) = 
[13']'B(13(z, t))[13'] in n 3 for all 13 ~ F. 

We choose for B(z, t) in (5.1) the BX(z, t; ~, s) defined in (4.17), and obtain 

/~Xr(z, t; ~, s) 

= ~ ([a~(~/(z, t))][~/'(z, t)])tBx[a~(~l(Z, t))l[~/'(z, t) le-l-is(~(z,  t); ~) 
"t~F 

(5.2) 

which is a solution of equations (4.2) and (4.8), because both a~ and the 
elements of F are symmetry transformations of the H 3 metric. With these 
functions we can construct a complete set of eigenfunctions of (4.2) and (4.8) 
on the 3-space (F, F). 

By means of equations (3.6) and (3.7) of Tomaschitz (1993) and equation 
(7.7) of Tomaschitz (1994a), we can write (5.2) as 

BXr(z, t; ~, s) 

= ~ ([L~][ct~-l~(z, t)])tBX[L~][ct~-i~(z, t)] I 'y- l '~l- l - isp-l- iS(z ,  t; ~-1~) 
-yeF 

(5.3) 
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with 

//Re(~/-l'6) -Im(~/-  1'6) 0 

[L.~] : = ~Im(~/O- 1'6) Re('y-l '6) 0 ) 0 ] 'y-- l '6 [ 

~/-l' 6 denotes the complex derivative of ~/-1 at 6. (~/-i acts now in the 
complex plane as a MObius transformation.) We have 

[t~]tnX[t~] = Bx~kx( 'y - l ' 6 )  (5.4) 

with complex functions hX(z) defined by kn(z) := hL(z) := z 2, kSl(z) = 
kS4(z) = Izt 2, and kS2(z) = h S 3 ( z )  = Izlz.  The basis B x in (4.15) is chosen 
so that hX(zlz2) = kX(zOkX(z2). Equation (5.2) may now be written as 

BXr(z, t; 6, s) 

= ~] [a.~-t~(z, t)]'Bx[a~-t~(z, t)]hx(~-| '6)l~l-l '61-1-;sP-t-;S(z,  t; 7-16) 
"yEF 

= ~ BX(z, t; ~--16, S)kX( 'y- l '6) l~-l '61-l- is  (5.5) 
~,EF 

The covering group acts here only on the boundary of  H 3 in the complex 
plane. From (5.5) we easily find 

BXr(z, t; 6, s) = BXr(z, t; [36, S)~kX(~'6)113'6 [-l-is (5.6) 

for all [3 ~ F. 
It is easy to see that the matrix elements of BX(z, t; ~-16, s) are uniformly 

bounded with respect to the elements of F. We write k = - 1 - is. The 
matrix elements of BXr(z, t; 6, s) are then bounded by 

I / ~ 1  < const. ~] 1~/'612+x (5.7) 
",/~F 

This bound is uniform for 6 ~ t.JJ~ (the j~ denote free faces of F at infinity 
of n 3) and the series converges for Re(2 + k) > 8; B is the Hausdorff 
dimension of the limit set of F. In the case that B > 1, we define the series 
(5.2), (5.3), and (5.5) along the abscissa Re(k) = - 1 by analytic continuation. 

The orthogonality relation is easily verified, and is quite analogous to 
that for vector fields [cf. equation (3.12) in Tomaschitz (1993)], 

(Bxr( s, 6), Brr( s', 6'))F = 27r3RSs-28xr(6 -- 6')8( s - s') (5.8) 

Here (-,  ")F denotes the Hilbert space scalar product on the 3-space (F, F), 
as in (4.16), but now with the domain of integration H 3 replaced by the 
polyhedron F. 
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In the completeness relation there are two square-integrable fields if 
> 1. For X = St, $4, we have 

u x : =  lim ( h - ( ~  
h-~(~- 2) 

- 2)) ~ [a~(z, t)]tBx[ot~(z, t)]pa-2(z, t; ~)1~/'612+x (5.9) 
",tEF 

We denote the normalized states by fix. These states are not eigenfunctions 
of (4.2); they emerge only if 8 > 1, and they are orthogonal to the states 
generated by the/~xr(6, s), X ~ (R, L, Sn, n = 1 . . . . .  4), s ~ R, 6 ~ t-Jfk. 
The completeness relation finally reads 

f dtrH3( s, 6) BiXar(z, t; 6, s ) l ~ ( z ' ,  t'; 6, s) 
X ~ R,L,Sn .I R • U f  k 

+ fiS'(z, t)aS1(z ', t ') + rtS4(z, ,s4 , t)Ukl (Z , t ') 

= g i k g j l ~ H 3 ( Z ,  t; z ' ,  t ') (5.10) 

The spectral parameter ~ ranges only over the free faces 3~ of F; the spectral 
measure dCrH 3 is given in equation (2.14) of Tomaschitz (1993). [We have 
put the expansion factor a('r), which is irrelevant here, equal to one.] The 
transverse states are generated by/~Rr(6, s) and/~Lr(6, S). All other states in 
(5.10) are orthogonal to them, and do not even solve (4.2)./~Rr and/~Lr are 
the circularly polarized states satisfying (4.23). [The spin operators (4.21) 
and (4.22), together with the tetrad fields on the horospheres, have to be 
regarded as projected into the 3-manifold by the covering projection.] 

With the/)xr  in (5.5) one can Construct wave packets as in (4.27)./)x 
is replaced there by the automorphic fields/~xr, and the domain of integration 
of  the spectral variable 6 is tgj~ instead of the whole plane R 2. In practice, 
however, one proceeds differently [cf. Tomaschitz (1994b)]. One starts with 
a wave packet (4.27) in the covering space H 3 and projects it onto the 3- 
manifold by periodization according to (5.1), 

r E 'ksw z = [~/]i k~(~/(, t))[~/']J (5.11) 
-fEr 

The considerations on energy in Section 3 remain true as they stand, with 
tensor fields B~ r defined on the multiply connected 3-manifold. Geodesic 
motion in a gravitational wave (5.11) is defined as usual by the perturbed 
RW metric gaii wr wr g~oWr g~.~r = O. ~i ---- g i j  4- B~j , = --c 2, ,1 

6. THE ANALOGUE TO MAXWELL'S EQUATIONS 

The Lagrange function (4.26) and the energy-momentum tensor (3.18)- 
(3.20) are structured as in electromagnetic theory, and so it is very easy to 
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derive the analogue to Maxwell's equations on the 
RW cosmology. 

From the potential representation (2.7) we have 

~g ~Kpla'Vapla. v ~ -  0 

and 

spacelike slices of a 

(6.1) 

1 1 
~"~"G = ~"~'~Bo,,,R~p~,~ = 0 (6.2) 

These identities can be derived by commuting derivatives and using the 
symmetry properties of the curvature tensor. Here (-g)-uz~KpCv is the totally 
antisymmetric Levi-Civita tensor on the 4-manifold. In a RW geometry, with 
Br fields satisfying the subsidiary conditions (2.12), (2.13), and (2.15), the 
right side of (6.2) vanishes. 

The wave equation (2.10) reads, under the given conditions (namely et 
= 13 = 0, subsidiary conditions, and curvature tensor of  a RW geometry), 

Gp.v,;'~ = 0 (6.3) 

This wave equation and the identities (3.10), (6.1), and (6.2) are analogous 
to the manifestly covariant Maxwell equations F ~  TM = 0 and (_g)-U2 
~r x = 0. The subsidiary conditions (2.12), (2.13), and (2.15) correspond 
to the Lorentz condition Ar '~ = 0 and the Coulomb gauge A0 = 0. 

To obtain the analogue of Maxwell's equations on the 3-slices, we first 
have to express the 4-dimensional covariant derivatives G~.t;~ in (6.2), (6.3), 
and (3.10) by covariant differentiation (11) on the 3-space. This is done in 
(A.7) and (A.8). Then we simply insert E and H via (3.15) and (3.17). From 
the defining equations and the subsidiary conditions it is easy to see that E U 
and H U are symmetric and have vanishing trace, E ,  ~ = H,] = 0. 

From (6.2) (K = 0, p = /) we obtain 

Ht'll,n = 0 (6.4) 

and from (3.10) (p = 0, v = n) 

E,,] I t= 0 (6.5) 

From (6.2) (K = k, p = l) we have 

1 1 (aZH,~). ~ _ "~-l/ze.to,,JEl,,,lli = 0 (6.6) 
C a 2 

and from the wave equation (6.3) (p = l, v -- 0) we finally obtain 

~ffz~,,~H,~ll m + 1 Etn.o = 0 (6.7) 
c 
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Equations (6.4)-(6.7) are the gravitational analogue to the vacuum Maxwell 
equations in RW cosmology. 

7. C ONC LUDI NG REMARKS 

We have constructed here a wave mechanics of linear gravitational waves 
on RW background geometries. This wave mechanics is self-consistent as a 
linear theory, and it admits a straightforward definition of  a positive energy 
density for wave packets. This is achieved by making extensive use of  the 
electromagnetic formalism. 

The theory developed is not meant as a linearized theory of gravity. 
There are no source terms in the evolution equation (6.3), which is designed for 
gravitational waves freely propagating on the RW background. In background 
metrics of lesser symmetry the electromagnetic formalism would break down, 
because the subsidiary (gauge) conditions (2.12), (2.13), and (2.15) become 
inconsistent with the wave equation. As in electrodynamics there remains 
some gauge freedom in the wave equation, even with the three gauge condi- 
tions imposed. We can easily find wave fields which satisfy Gp~v = 0 as 
well as the gauge conditions. In the case of vanishing curvature (e.g., a 
Minkowski universe or RW cosmology with linear expansion factor and 
negatively curved 3-space) we may simply choose B~v = ~.~;v- Here ~ is a 
scalar independent of cosmic time which satisfies the Laplace-Beltrami equa- 
tion on the 3-space. However, such solutions of the wave equation do not 
correspond to gravitational fields. We defined the most general shape of  a 
gravitational wave packet in equations (4.27) and (5.11). These wave packets 
propagate with the speed of light. The weight function in (4.27) must be 
chosen so that Bff and its derivatives are square-integrable with respect to 
the volume element of the 3-space. [If w(s, ~, X) is Gaussian with respect 
to both spectral variables s and ~, this certainly works out, in (4.27) as well 
as in (5.11).] Then the wave pulse has a well-defined energy that scales with 
the inverse of the expansion factor, a('r)E = const. 

In the wave equation (2.9) we have ultimately chosen ct = 13 = 0 
because of  the three conditions summarized in the Introduction. In the short- 
wave approximation, Misner et al. (1973) put ct = - 1 ,  13 = 1; Isaacson 
(1968) chooses ct = 13 = 1 in this approximation scheme; Landau and 
Lifshitz (1962) choose ot = 13 = - 1 .  The linear wave equation is then only 
approximately consistent with the three subsidiary conditions and/or the 
requirement that the gravitational pulse propagates with the speed of light. 
But for all these choices of ot and 13 the authors come to the same conclusion, 
namely that (4.27) is the generic shape of a linearized wave packet; cf. also 
the discussion at the end of Section 4. 
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In a RW cosmology linear gravitational waves exactly satisfy a wave 
equation which is consistent with the gauge conditions imposed. The wave 
equation is conformally coupled and makes it possible to treat linear gravita- 
tional waves in close analogy to electrodynamics. We have demonstrated this 
here by means of Maxwell's equations, the energy-momentum tensor, and 
the spin of wave fields. 

I should finally mention that my initial motivation to design a self- 
consistent linear formalism originated in the study of gravitational waves in 
RW geometries with multiply connected spacelike slices, as outlined in Sec- 
tion 5. The 'method of images' as indicated in (5.1) would give a fairly 
uncontrollable result unless the periodized wave field is an exact solution of 
the wave equation. 

APPENDIX. THE CURVATURE TENSOR IN RW COSMOLOGIES 
AND SOME EXPLICIT  FORMULAS F O R  COVARIANT 
DIFFERENTIATION 

The RW metric g ~  is defined as goo = - c  2, gij = a2('r)go., and g0j = 
0, where go. is a metric of constant curvature - I l R  2 on the 3-space (R may 
be real, imaginary, or oo). a(-r) is the expansion factor. We denote the determi- 
nant of go. by % Latin indices run from 1 to 3, and Greek indices run from 
0 to 3. For g~v we have the Christoffel symbols 

_ = 1 a ( A . 1 )  
a F~ g~t c 2 a F~m = ~'m a '  

The symbols with two and three zero-indices vanish in a RW geometry, and 
the symbols with spatial indices F~k are time independent. Many calculations 
of this paper are performed without specifying the sign of the curvature of 
go and without a special coordinate representation of the 3-space. Only in 
Sections 4 and 5 do we assume that the 3-space has negative curvature (R 
> 0), and we use there as coordinate representation the Poincar6 half-space 
H 3, with rectangular coordinates (xl, x2, t), t > 0, and go = R2t-2~ij (cf. 
Tomaschitz, 1993, 1994a,b). 

The nonzero components of the Riemann tensor [with sign conventions 
as in Landau and Lifshitz (1962) and Misner e t  al. (1973)] are 

Rkt,nn = R~a2 c2 (gknglm -- gkmgln), Rolon = --gin a 

All other nonvanishing components can be obtained by using the symmetry 
with respect to the interchange of the first and second index pair and the 
skew-symmetry within these index pairs. 
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The nonvanishing components of the first covariant derivatives of the 
Riemann tensor are 

' a z c 2 a 2 + "~ (g~glm - -  g k m g l n )  

a (  1 l d 2 l / i )  
R~ - a R$a 2 c 2 ' ~  + -~  a (gingtm - gimgln) 

Roton,o = -~-~ gl. (A.3) 

The nonvanishing components of the Ricci tensor read 

(R_@a22 1 / / + 2  1 a~) Rt .  = gl~ + -~  a ~ , Roo = - 3  ~ia (A.4) 

Its derivatives are 

= 2gl,, a (  1 1 gi 1 a2~ 
a \ + a ] ' goo;~ Ron.l 

" d T a  

R m n ; o = g m n [ 4 d t (  1 1 /i 1 ti~) 1 d //] 
a ~ + c z a  c 2 + ~ - ~ a  (A.5) 

All other components vanish or can be obtained by the symmetry in the first 
and second indices. 

Next we give some formulas which relate four-dimensional covariant 
differentiation (RW metric g~)  with covariant differentiation on the spacelike 
slices (metric gii)- In a RW geometry this is comparatively simple, because 
F(3)~t ~ = F(4)~k, i.e., the Christoffel symbols F (3) of the 3-metric gij coincide 
with the Christoffel symbols 17 (4) (with spatial indices) of g~. Therefore we 
can drop the superscripts (3), (4). We denote three-dimensional covariant 
differentiation on the 3-slices by a double stroke (ll). A subscript comma 
followed by zero denotes ordinary differentiation with respect to cosmic time 
"r. If B~,~ is a symmetric tensor field on the 4-manifold, then Bm, is a symmetric 
tensor field on the 3-slices, Born is a 3-vector, and Boo is a scalar on the 3-space 
of the RW cosmology ('r is then regarded as a parameter labeling the 3-slices, 
and we consider coordinate transformations on a given 3-slice). We have 

ti 
1 (t gtmB,,o - 1 d_ gtnBmo, Bmn;o = Bm,,,o - 2 - Bin,, Bmn;t = Bm,,lll --  C'-5 a c 2 a a 

(* Bt,,, 1 dt d Bmo,t = Bmollt - a - c "5 a gtmBoo, Bmo.o, = Bmoo, - -a Bmo 

Boo;t = Boollt - 2 a Bto, B0o:o = Boo,0 (A.6) a 
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All other components  can be obtained by the symmetry  in the first two indices. 
For the G field defined in (2.7) we have as nonvanishing components  

G l m  n = Blntl m - -  Blmtl n "4" 1 d 1 d C ~ a gl',  Born C 2 a - -  - - - g l m B O  n 

Gimo = Blollm __ B l m ,  0 + Lt B I  m _ 1 a_ g l m B o  0 
a C 2 a 

Gomn = Bonl!m - Bomlln, aomo = Bo~lm - Bom,o - a__ Bo,', (A.7) 
a 

G is o f  course skew in the last two indices. For its derivatives we have 

l a  l d  l d  
, = - -  - gk lGOmn - -  C- 5 -- gkmGlOn - -  - -  - gknGImO Glmn'k  GImnllk - ~  a a C 2 a 

ti l d  l d  
= - -  - Gkmn - -  - -  - gkmGoon  - -  - g k n G o m o  G0m.;k Gom~l~ a c 2 a ~ a 

GImn;O = Glmn,O - -  3 a_ Glmn,  Gomn;O = Gomn,O - 2 a_ Go. , , ,  
a a 

d ~f2-1kn 1 d GlOn'k = Gtonllk - -  a - -  - ~  - g k t G o o . ,  Gto',.o = Gto . ,o  - 2 a_ Gto' ,  " a " a 

(i  (t  d 
Goon;k = GOOnllk - -  -- Gko,,  - -  - G o k . ,  Goo',;o = Goo',,o - - Goo', (A.8) 

a a a 

All other components  are zero or can be obtained f rom the ant isymmetry in 
the second and third indices. 

To perform the time separation in the wave equation (cf. Section 4) one 
has to express the tensorial d 'Alembert ian Br ;~' by covariant  derivatives 
on the 3-slices, 

B " 1 1 d 1 d 
mn;et = Bmnllk Ilk --  -'~ Bm,, o o + - -  - Bm',,o - 2 - + " " c z a ~ a (B~ Bomll',) 

1 d 2 _ 2 1 a  1 d 2 
+ 2 - ~ - ~ B z ' ,  + c 2 a B , , , ' ,  + 2 - - ~ - ~ g m . B o o  

B ;~ 1 - 2 a__ 1 d Boz,o + 1 t i  Bo m o~,~ = Bo,~llk tlk - ~ Bo~,o,o a Bm~llk - ~ a c a 

- 2  1 aBoo,m + 7 1 a2 C -'-~ a -~  -~  BOm 

B ;~' 1 1 d 
oo,~ = Bool~ltk -- ~ Boo,o,0 - 3 ~ a Boo.o - 4 

d d2 6 1 d 2 
- B o k  I~ + 2 + Boo a - ~  Bkk  C 2 

(A.9) 
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Here Bmnllk I~, BOmllk Ilk, and Boollk Ilk are the tensorial, vectorial, and scalar Lapla- 
cians on the 3-slices. We now evaluate these Laplacians for the case that 
the 3-slices are a('r)-scaled copies of hyperbolic space H a [metric gij = 
a2('r)R2t-28ij]. The Christoffel indices are 

r13 = = F333  = = -r 2 = - t  -1 (A.10) 

all other three-indices are zero or obtained by interchanging the lower indices. 
We obtain 

a2R2Bmnllk Ilk = t2AgBmn - 2Bran + 2B33~mn + 3tBmn.3 - 2t(B3n,m + B3m,n) 

a2R2B3nlg) Ik = t2AeB3n - 5B3n - 2tB33,n + 3tB3n,3 + 2t(Bln, l + B2n,2) 

a2R2B3311k Ilk = t2AEB33 + 3tB33,3 - 4B33 + 2(Bll + B22) + 4t(Bl3,1 + B23,2) 

a2R2Bonllk Itk = t2AeBo, - 2B0~ + tB0~,3 - 2tB3o,n 

a2R2Bo3llk Ilk = t2AeBo3 - 3B03 + t(2B01A + 2Bo2,2 + Bo3,3) 

a2R2Boollk I1~ = t2AeBoo - tBoo,3 (A. 1 1) 

The subscript comma indicates as always ordinary derivatives, and the sub- 
scripts 1, 2, 3 denote differentiation with respect to xt, x2, and t, respectively. 
The indices n, m run in (A.11) only over 1, 2. Here Ae := 0x21 + 0x22 + 02t 
is the scalar Euclidean Laplacian in the half-space H 3. 

The components of the 3-divergence in (4.8) read 

a2R2Bmkl~ = t2(Bml,l + Bm2,2 + Bm3,3) - tnm3 

a2R2B3k Elk = t2(B31,1 + B32,2 + B33,3) + t (Bt l  + B22) (A.12) 

m runs here again only over 1, 2. 
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